Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570506

RESUMO

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/genética , Mutação , Microambiente Tumoral/genética
4.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546906

RESUMO

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.

5.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36889811

RESUMO

BACKGROUND: The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS: We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS: In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS: These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.


Assuntos
Mucina-4 , Neoplasias , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Regulação para Baixo , Mucina-4/genética , Mucina-4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor ErbB-2 , Linhagem Celular Tumoral , Terapia de Imunossupressão , Neoplasias/tratamento farmacológico
6.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824887

RESUMO

Mutations affecting enhancer chromatin regulators CREBBP and KMT2D are highly co-occurrent in germinal center (GC)-derived lymphomas and other tumors, even though regulating similar pathways. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d (C+K) indeed accelerated lymphomagenesis. C+K haploinsufficiency induced GC hyperplasia by altering cell fate decisions, skewing B cells away from memory and plasma cell differentiation. C+K deficiency particularly impaired enhancer activation for immune synapse genes involved in exiting the GC reaction. This effect was especially severe at super-enhancers for immunoregulatory and differentiation genes. Mechanistically, CREBBP and KMT2D formed a complex, were highly co-localized on chromatin, and were required for each-other's stable recruitment to enhancers. Notably, C+K lymphomas in mice and humans manifested significantly reduced CD8 + T-cell abundance. Hence, deficiency of C+K cooperatively induced an immune evasive phenotype due at least in part to failure to activate key immune synapse super-enhancers, associated with altered immune cell fate decisions. SIGNIFICANCE: Although CREBBP and KMT2D have similar enhancer regulatory functions, they are paradoxically co-mutated in lymphomas. We show that their combined loss causes specific disruption of super-enhancers driving immune synapse genes. Importantly, this leads to reduction of CD8 cells in lymphomas, linking super-enhancer function to immune surveillance, with implications for immunotherapy resistance.

7.
Cancer Discov ; 13(1): 216-243, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36264161

RESUMO

A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE: Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Linfócitos B , Linfoma Difuso de Grandes Células B , Humanos , Animais , Camundongos , Idoso , Estudos Prospectivos , Linfoma Difuso de Grandes Células B/patologia , Mutação , Prognóstico
8.
Life Sci ; 314: 121287, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526044

RESUMO

AIMS: Photodynamic therapy (PDT) is a treatment modality for several cancers involving the administration of a tumour-localising photosensitiser (PS) and its subsequent activation by light, resulting in tumour damage. Ras oncogenes have been strongly associated with chemo- and radio-resistance. Based on the described roles of adhesion and cell morphology on drug resistance, we studied if the differences in shape, cell-extracellular matrix and cell-cell adhesion induced by Ras transfection, play a role in the resistance to PDT. MATERIALS AND METHODS: We employed the human normal breast HB4a cells transfected with H-RAS and a panel of five PSs. KEY FINDINGS: We found that resistance to PDT of the HB4a-Ras cells employing all the PSs, increased between 1.3 and 2.5-fold as compared to the parental cells. There was no correlation between resistance and intracellular PS levels or PS intracellular localisation. Even when Ras-transfected cells present lower adherence to the ECM proteins, this does not make them more sensitive to PDT or chemotherapy. On the contrary, a marked gain of resistance to PDT was observed in floating cells as compared to adhesive cells, accounting for the higher ability conferred by Ras to survive in conditions of decreased cell-extracellular matrix interactions. HB4a-Ras cells displayed disorganisation of actin fibres, mislocalised E-cadherin and vinculin and lower expression of E-cadherin and ß1-integrin as compared to HB4a cells. SIGNIFICANCE: Knowledge of the mechanisms of resistance to photodamage in Ras-overexpressing cells may lead to the optimization of the combination of PDT with other treatments.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Adesão Celular , Genes ras , Neoplasias da Mama/patologia , Fármacos Fotossensibilizantes/farmacologia , Caderinas
9.
Epigenet Insights ; 15: 25168657221126314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246163

RESUMO

Introduction: Experiencing psychosocial stress is associated with poor health outcomes such as hypertension and obesity, which are risk factors for developing cardiovascular disease. African American women experience disproportionate risk for cardiovascular disease including exposure to high levels of psychosocial stress. We hypothesized that psychosocial stress, such as perceived stress overload, may influence epigenetic marks, specifically DNA methylation (DNAm), that contribute to increased risk for cardiovascular disease in African American women. Methods: We conducted an epigenome-wide study evaluating the relationship of psychosocial stress and DNAm among African American mothers from the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) cohort. Linear mixed effects models were used to explore the epigenome-wide associations with the Stress Overload Scale (SOS), which examines self-reported past-week stress, event load and personal vulnerability. Results: In total, n = 228 participants were included in our analysis. After adjusting for known epigenetic confounders, we did not identify any DNAm sites associated with maternal report of stress measured by SOS after controlling for multiple comparisons. Several of the top differentially methylated CpG sites related to SOS score (P < 1 × 10-5), mapped to genes of unknown significance for hypertension or heart disease, namely, PXDNL and C22orf42. Conclusions: This study provides foundational knowledge for future studies examining epigenetic associations with stress and other psychosocial measures in African Americans, a key area for growth in epigenetics. Future studies including larger sample sizes and replication data are warranted.

10.
Front Immunol ; 12: 688493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621263

RESUMO

The cohesin complex plays critical roles in genomic stability and gene expression through effects on 3D architecture. Cohesin core subunit genes are mutated across a wide cross-section of cancers, but not in germinal center (GC) derived lymphomas. In spite of this, haploinsufficiency of cohesin ATPase subunit Smc3 was shown to contribute to malignant transformation of GC B-cells in mice. Herein we explored potential mechanisms and clinical relevance of Smc3 deficiency in GC lymphomagenesis. Transcriptional profiling of Smc3 haploinsufficient murine lymphomas revealed downregulation of genes repressed by loss of epigenetic tumor suppressors Tet2 and Kmt2d. Profiling 3D chromosomal interactions in lymphomas revealed impaired enhancer-promoter interactions affecting genes like Tet2, which was aberrantly downregulated in Smc3 deficient lymphomas. Tet2 plays important roles in B-cell exit from the GC reaction, and single cell RNA-seq profiles and phenotypic trajectory analysis in Smc3 mutant mice revealed a specific defect in commitment to the final steps of plasma cell differentiation. Although Smc3 deficiency resulted in structural abnormalities in GC B-cells, there was no increase of somatic mutations or structural variants in Smc3 haploinsufficient lymphomas, suggesting that cohesin deficiency largely induces lymphomas through disruption of enhancer-promoter interactions of terminal differentiation and tumor suppressor genes. Strikingly, the presence of the Smc3 haploinsufficient GC B-cell transcriptional signature in human patients with GC-derived diffuse large B-cell lymphoma (DLBCL) was linked to inferior clinical outcome and low expression of cohesin core subunits. Reciprocally, reduced expression of cohesin subunits was an independent risk factor for worse survival int DLBCL patient cohorts. Collectively, the data suggest that Smc3 functions as a bona fide tumor suppressor for lymphomas through non-genetic mechanisms, and drives disease by disrupting the commitment of GC B-cells to the plasma cell fate.


Assuntos
Linfócitos B/imunologia , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Dosagem de Genes , Centro Germinativo/imunologia , Haploinsuficiência , Linfoma Difuso de Grandes Células B/genética , Plasmócitos/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Centro Germinativo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fenótipo , Plasmócitos/metabolismo , Transcrição Gênica
11.
Nat Immunol ; 22(10): 1327-1340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556886

RESUMO

During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCAB in GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions.


Assuntos
Cromatina/imunologia , Imunidade Humoral/imunologia , Transportador 2 de Cátion Orgânico/imunologia , Domínios Proteicos/imunologia , Animais , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Epigenômica/métodos , Feminino , Genômica/métodos , Centro Germinativo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/imunologia
12.
Br J Cancer ; 124(9): 1581-1591, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723394

RESUMO

BACKGROUND: Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS: Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS: Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS: PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Furanos/farmacologia , Cetonas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Immunol ; 22(2): 240-253, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432228

RESUMO

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Dosagem de Genes , Centro Germinativo/metabolismo , Imunidade Humoral , Linfoma de Células B/genética , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/deficiência , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/patologia , Haploinsuficiência , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
14.
Cancer Cell ; 37(5): 655-673.e11, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32396861

RESUMO

Follicular lymphomas (FLs) are slow-growing, indolent tumors containing extensive follicular dendritic cell (FDC) networks and recurrent EZH2 gain-of-function mutations. Paradoxically, FLs originate from highly proliferative germinal center (GC) B cells with proliferation strictly dependent on interactions with T follicular helper cells. Herein, we show that EZH2 mutations initiate FL by attenuating GC B cell requirement for T cell help and driving slow expansion of GC centrocytes that become enmeshed with and dependent on FDCs. By impairing T cell help, mutant EZH2 prevents induction of proliferative MYC programs. Thus, EZH2 mutation fosters malignant transformation by epigenetically reprograming B cells to form an aberrant immunological niche that reflects characteristic features of human FLs, explaining how indolent tumors arise from GC B cells.


Assuntos
Linfócitos B/imunologia , Transformação Celular Neoplásica/imunologia , Reprogramação Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma de Células B/imunologia , Linfoma Folicular/imunologia , Mutação , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfoma Folicular/genética , Linfoma Folicular/patologia , Camundongos , Camundongos Endogâmicos C57BL
15.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31564638

RESUMO

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Assuntos
Carcinoma/patologia , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Metástase Neoplásica/genética , Animais , Carcinogênese/genética , Carcinoma/genética , Linhagem Celular Tumoral , Cromatina/genética , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Progressão da Doença , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , RNA-Seq , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Curr Opin Hematol ; 26(4): 294-302, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033702

RESUMO

PURPOSE OF REVIEW: Chromatin organization during interphase is nonrandom, and dictated by a delicate equilibrium between biophysics, transcription factor expression, and topological regulators of the chromatin. Emerging evidence demonstrate a role for chromosomal conformation at different stages of B-cell development. In the present review, we provide an updated picture of the current knowledge regarding how chromosomal conformation regulates the B-cell phenotype and how disruption of this architecture could lead to B-cell lymphoma. RECENT FINDINGS: B-cell development requires proper assembly of a rearranged VDJ locus, which will determine antigen receptor specificity. Recently, evidence pointed to a role for topological regulators during VDJ recombination. Research studies also demonstrated a link between shifts in nuclear chromosomal architecture during B-cell activation and in formation of germinal centers, which is required for immunoglobulin affinity maturation. Class-switch recombination was shown to be dependent on the presence of topology regulators. Loss of topological insulation of enhancers may lead to oncogene activation, suggesting that misfolding of chromatin may constitute a new epigenetic mechanism of malignant transformation. Finally, CCCTC-binding factor and cohesin binding sites have shown a higher probability of mutations and translocations in lymphomas, lending further support to the potential role of chromatin architecture in cancer development. SUMMARY: Chromosomal conformation is now recognized as a key feature in the development of a robust humoral immune response. Several examples from the literature show that dysregulation of chromosomal architecture may be a foundational event during malignancy. Therefore, understanding the mechanisms that regulate chromosomal folding and drive gene activation are instrumental for a better understanding of immune regulation and lymphomagenesis.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cromossomos Humanos/metabolismo , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Linfócitos B/imunologia , Cromossomos Humanos/genética , Centro Germinativo/imunologia , Humanos , Ativação Linfocitária
17.
Cancer Discov ; 8(12): 1632-1653, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30274972

RESUMO

TET2 somatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype. TET2 loss was linked to focal loss of enhancer hydroxymethylation and transcriptional repression of genes that mediate GC exit, such as PRDM1. Notably, these enhancers and genes are also repressed in CREBBP-mutant DLBCLs. Accordingly, TET2 mutation in patients yields a CREBBP-mutant gene-expression signature, CREBBP and TET2 mutations are generally mutually exclusive, and hydroxymethylation loss caused by TET2 deficiency impairs enhancer H3K27 acetylation. Hence, TET2 plays a critical role in the GC reaction, and its loss of function results in lymphomagenesis through failure to activate genes linked to GC exit signals. SIGNIFICANCE: We show that TET2 is required for exit of the GC, B-cell differentiation, and is a tumor suppressor for mature B cells. Loss of TET2 phenocopies CREBBP somatic mutation. These results advocate for sequencing TET2 in patients with lymphoma and for the testing of epigenetic therapies to treat these tumors.See related commentary by Shingleton and Dave, p. 1515.This article is highlighted in the In This Issue feature, p. 1494.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/genética , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epigênese Genética/genética , Perfilação da Expressão Gênica/métodos , Centro Germinativo/patologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hiperplasia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos Knockout , Camundongos Transgênicos , Mutação , Plasmócitos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
18.
BMC Cancer ; 17(1): 895, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29281999

RESUMO

BACKGROUND: Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC. METHODS: We retrospectively studied 86 HER2-positive breast cancer patients treated with trastuzumab and chemotherapy in the adjuvant setting. We explored the association of the IMPC component with clinicopathological parameters at diagnosis and its prognostic value. We compared MUC4 expression in IMPC with respect to other histological breast cancer subtypes by immunohistochemistry. RESULTS: IMPC, either as a pure entity or associated with invasive ductal carcinoma (IDC), was present in 18.6% of HER2-positive cases. It was positively correlated with estrogen receptor expression and tumor size and inversely correlated with patient's age. Disease-free survival was significantly lower in patients with IMPC (hazard ratio = 2.6; 95%, confidence interval 1.1-6.1, P = 0.0340). MUC4, a glycoprotein associated with metastasis, was strongly expressed in all IMPC cases tested. IMPC appeared as the histological breast cancer subtype with the highest MUC4 expression compared to IDC, lobular and mucinous carcinoma. CONCLUSION: In HER2-positive breast cancer, the presence of IMPC should be carefully examined. As it is often not informed, because it is relatively difficult to identify or altogether overlooked, we propose MUC4 expression as a useful biomarker to highlight IMPC presence. Patients with MUC4-positive tumors with IMPC component should be more frequently monitored and/or receive additional therapies.


Assuntos
Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Carcinoma Papilar/mortalidade , Mucina-4/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Adulto , Idoso , Antineoplásicos Imunológicos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Estudos de Casos e Controles , Quimioterapia Adjuvante , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Estudos Retrospectivos , Taxa de Sobrevida
19.
Nat Commun ; 8(1): 877, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026085

RESUMO

The EZH2 histone methyltransferase is required for B cells to form germinal centers (GC). Here we show that EZH2 mediates GC formation through repression of cyclin-dependent kinase inhibitor CDKN1A (p21Cip1). Deletion of Cdkn1a rescues the GC reaction in Ezh2 -/- mice. Using a 3D B cell follicular organoid system that mimics the GC reaction, we show that depletion of EZH2 suppresses G1 to S phase transition of GC B cells in a Cdkn1a-dependent manner. GC B cells of Cdkn1a -/- Ezh2 -/- mice have high levels of phospho-Rb, indicating that loss of Cdkn1a enables progression of cell cycle. Moreover, the transcription factor E2F1 induces EZH2 during the GC reaction. E2f1 -/- mice manifest impaired GC responses, which is rescued by restoring EZH2 expression, thus defining a positive feedback loop in which EZH2 controls GC B cell proliferation by suppressing CDKN1A, enabling cell cycle progression with a concomitant phosphorylation of Rb and release of E2F1.The histone methyltransferase EZH2 silences genes by generating H3K27me3 marks. Here the authors use a 3D GC organoid and show EZH2 mediates germinal centre (GC) formation through epigenetic silencing of CDKN1A and release of cell cycle checkpoints.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Fator de Transcrição E2F1/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Centro Germinativo/metabolismo , Animais , Proliferação de Células , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Retroalimentação Fisiológica , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Inativação Gênica , Camundongos
20.
Clin Cancer Res ; 23(3): 636-648, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698002

RESUMO

PURPOSE: Although trastuzumab administration improved the outcome of HER2-positive breast cancer patients, resistance events hamper its clinical benefits. We demonstrated that TNFα stimulation in vitro induces trastuzumab resistance in HER2-positive breast cancer cell lines. Here, we explored the mechanism of TNFα-induced trastuzumab resistance and the therapeutic strategies to overcome it. EXPERIMENTAL DESIGN: Trastuzumab-sensitive breast cancer cells, genetically engineered to stably overexpress TNFα, and de novo trastuzumab-resistant tumors, were used to evaluate trastuzumab response and TNFα-blocking antibodies effectiveness respectively. Immunohistochemistry and antibody-dependent cell cytotoxicity (ADCC), together with siRNA strategy, were used to explore TNFα influence on the expression and function of its downstream target, mucin 4 (MUC4). The clinical relevance of MUC4 expression was studied in a cohort of 78 HER2-positive breast cancer patients treated with adjuvant trastuzumab. RESULTS: TNFα overexpression turned trastuzumab-sensitive cells and tumors into resistant ones. Histopathologic findings revealed mucin foci in TNFα-producing tumors. TNFα induced upregulation of MUC4 that reduced trastuzumab binding to its epitope and impaired ADCC. Silencing MUC4 enhanced trastuzumab binding, increased ADCC, and overcame trastuzumab and trastuzumab-emtansine antiproliferative effects in TNFα-overexpressing cells. Accordingly, administration of TNFα-blocking antibodies downregulated MUC4 and sensitized de novo trastuzumab-resistant breast cancer cells and tumors to trastuzumab. In HER2-positive breast cancer samples, MUC4 expression was found to be an independent predictor of poor disease-free survival (P = 0.008). CONCLUSIONS: We identified TNFα-induced MUC4 expression as a novel trastuzumab resistance mechanism. We propose MUC4 expression as a predictive biomarker of trastuzumab efficacy and a guide to combination therapy of TNFα-blocking antibodies with trastuzumab. Clin Cancer Res; 23(3); 636-48. ©2016 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica , Mucina-4/fisiologia , Proteínas de Neoplasias/análise , Receptor ErbB-2/análise , Trastuzumab/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Ado-Trastuzumab Emtansina , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Maitansina/análogos & derivados , Maitansina/farmacologia , Camundongos , Camundongos Nus , Mucina-4/biossíntese , Mucina-4/genética , Proteínas de Neoplasias/antagonistas & inibidores , Interferência de RNA , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...